1.3.3 Elliot Point 1 Alternative

The Elliot Point 1 Alternative would develop the Mukilteo Multimodal Project on the eastern portion of the Mukilteo Tank Farm. Its key features are shown on Figure 5.

Because the shoreline slopes more gradually in this location, the ferry slip would need to be located about 250 feet offshore, which would require a longer pier and trestle. A new passenger building and a maintenance building would be located over water on the new concrete trestle. An overhead passenger loading ramp would connect to a second story of the new passenger building.

The Tank Farm Pier, including approximately 3,000 piles, would be removed up to its existing bulkhead and a channel 400 feet wide that provides a navigation depth of 26 feet would be dredged through part of the area currently occupied by the pier. Near the pier, current depths range from 14 to 17 feet, and other areas are deeper.

WSDOT would remove the existing ferry terminal, including buildings and marine structures, but the Port of Everett’s fishing pier at the current terminal site would remain. The current vehicle holding area would be vacated.

The Elliot Point 1 Alternative would also provide parking for commuter rail, the Mount Baker Terminal shoreline access area, and ferry employees. The alternative includes toll booths, ferry vehicle holding areas, and shoreline promenades on each side of the new ferry dock. Japanese Creek, which currently runs in a pipe culvert below the Mukilteo Tank Farm, would be restored to an open stream north of the extended First Street, with a 50-foot buffer on either side. The stream would be crossed by a pedestrian bridge near the shoreline. New lighting would illuminate First Street and the terminal facilities, including the vehicle holding areas.

The vehicle holding areas would have capacity for approximately 216 vehicles. A terminal supervisor’s building would be constructed above four new toll booths east of the holding area. This 35-foot-high structure would be oriented north-south.

First Street would be realigned and extended as a four-lane roadway from SR 525 to the Port of Everett’s Mount Baker Terminal, also providing sidewalks and bike lanes. A new signalized intersection with SR 525 would be constructed. A rebuilt First Street/Park Avenue intersection would provide access to a reconfigured parking and access area for Mukilteo Station.
Figure 5. **Elliot Point 1 Alternative**

- **Elliot Point 1 Alternative**
  - To be Removed
  - Area Vacated by WSF
  - Ferry
  - Dredging Locations under Pier
  - City Boundary
A new transit center with six bus bays would be west of the new terminal. Access and parking for Mukilteo Station would be configured to connect to the First Street extension.

New security fences and gates would secure the holding and terminal area during periods of heightened security, as required by the U.S. Coast Guard.

### 1.3.4 Elliot Point 2 Alternative

The Elliot Point 2 Alternative would develop the project on the western portion of the Mukilteo Tank Farm. It would have a more compact footprint than the Elliot Point 1 Alternative due to the deeper water near the shore where the ferry would berth. Its key features are shown on Figure 6.

Elliot Point 2 would have the same types of marine facilities as Elliot Point 1, but because there is no beach and the water is deeper at this location, the ferry slip would be nearer to the shore than Elliot Point 1, with a shorter trestle. The Tank Farm Pier would be removed and a channel 500 feet wide that provides a navigation depth of 26 feet would be dredged through part of the area currently occupied by the pier.

The existing ferry facility, including buildings and marine structures, would be removed, but the Port of Everett’s fishing pier would remain. A ferry employee parking area would be located on the east side of SR 525, occupying part of the area currently used for vehicle holding, but the remainder of the existing holding area would be vacated.

A new passenger building and a maintenance building would be located immediately upland of the ferry dock. An overhead passenger loading ramp would connect to a second story of the new passenger building.

The vehicle holding area would have the holding capacity for approximately 216 vehicles. The terminal supervisor’s building would be west of the vehicle holding area, near four new toll booths.

First Street would be realigned and extended as a four-lane roadway from SR 525 to a signalized entrance to the new ferry terminal. First Street would continue as a two-lane road to a new bus transit and paratransit center and a relocated parking area for Mukilteo Station.

A new transit center with six new bus bays and a transit passenger area would be on the eastern part of the site.
Figure 6. Elliot Point 2 Alternative

Mukilteo Multimodal Project
The First Street improvements would include a new signalized intersection with SR 525 and a reconstructed intersection with Park Avenue. The extended roadway would generally be along the southern portion of the Mukilteo Tank Farm. The First Street extension would occupy areas currently used by Sound Transit for the Mukilteo Station parking and pick-up/drop-off functions.

First Street would feature sidewalks and bicycle lanes. At the driveway for the ferry terminal, a walkway would be built along the edge of the terminal from First Street to a shoreline promenade located west of the ferry slip. Other sidewalks would link the Mukilteo Station and the transit center, which would also have relocated commuter rail parking and a shoreline promenade.

As with the Elliot Point 1 Alternative, this alternative would include new security fences and gates surrounding the holding area and terminal.

1.4 Project Construction Activities Relevant to this Hazardous Materials Analysis

Based on the descriptions of the four proposed project alternatives, the hazardous materials analysis performed for this Hazardous Materials Discipline Report (discipline report or report) considered whether or not WSF would perform the following activities for each of the project alternatives:

- Acquire property for project construction since WSF could assume liability for cleaning up contamination related to property it acquires.
- Renovate, remove, or excavate structures and equipment, including buildings, piers, and transformers, that could contain asbestos-containing material (ACM), lead-based paint (LBP), polychlorinated biphenyls (PCBs), and mercury because disturbance of such materials poses risks to public and worker safety.
- Remove above ground storage tanks (ASTs), underground storage tanks (USTs), and associated contaminated soil because such structures and soil could contain petroleum products and other hazardous materials that could be released to the environment.
- Decommission underground oil/water separators, bulk fuel distribution facilities, remediation wells, and all associated piping because such structures could contain residual petroleum products and other hazardous materials that could be spread during project construction and could serve as contaminant conduits.
- Remove creosote-treated timber and piles from structures being renovated or removed, including buildings, piers, and railway tracks, because creosote-treated timber and piles contaminate the environment.

- Disturb, dredge, or excavate sediment and soil that has been in contact with creosote-treated timber or piles because such sediment and soil could be contaminated with creosote and be spread as a result of project work.

- Grade or excavate contaminated soil because such activities would spread contamination.

- Dewater excavations or pits in the vicinity of contaminated groundwater because contaminated groundwater could be encountered or spread, and then be drawn into the excavations or pits, as a result of dewatering activities.

- Construct stormwater facilities in contaminated areas because any infiltration from those facilities could spread contamination that exists in those areas.
2. OVERVIEW OF HAZARDOUS MATERIALS ANALYSIS AND REGULATORY CONTEXT

2.1 Analysis Overview

In general, a hazardous material is a substance that may harm human health or the environment because of its physical or chemical characteristics. Hazardous materials may be classified in different categories based on the laws and regulations that define their characteristics and uses. These classifications include hazardous waste, dangerous waste, hazardous substances, and toxic substances.

The hazardous materials analysis in this discipline report evaluates the impacts related to hazardous materials that existing conditions could have on the project as well as impacts related to hazardous materials that the project could have on the natural and built environment (collectively, hazardous materials impacts). The analysis then identifies measures that could mitigate each of the identified impacts and includes estimated costs of the identified mitigation measures where applicable. In performing these evaluations and identifying these mitigation measures, the team of people that developed this report (analysts) used the methodology set forth in Attachment A of this report.

WSF is considering hazardous materials in planning for this project because WSF could, as part of the project, acquire property contaminated with hazardous materials and could, during project construction, encounter hazardous materials. Hazardous materials would also be used and could be accidentally spilled during project construction and operation. Acquiring contaminated property and encountering, using, and spilling hazardous materials could subject WSF to liability for cleaning up hazardous materials; harm project workers, the public, and the environment; delay project construction; increase project costs; and temporarily shut down project operation. Identification in this report of contaminated property that could be acquired and hazardous materials that could be encountered, used, or spilled allows WSF to engage in investigations and planning to avoid or reduce the potential impacts of such acquisitions, encounters, uses, and spills.
2.2 Regulatory Context Overview

Numerous laws, regulations, guidance documents, and policies govern the handling, disposal, and remediation of hazardous materials. The most common of these laws and regulations are described in Attachment B.